Busque entre los 166288 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2012-11-05T12:51:30Z | |
dc.date.available | 2012-11-05T12:51:30Z | |
dc.date.issued | 2012-10 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/23603 | |
dc.description.abstract | When there is a need to understand the data stored in a database, one of the main requirements is being able to extract knowledge in the form of rules. Classification strategies allow extracting rules almost naturally. In this paper, the CLUHR classification strategy is extended to work with databases that have nominal attributes. Finally, the results obtained using the databases from the UCI repository are presented and compared with other existing classification models, showing that the algorithm presented requires less computational resources and achieves the same accuracy level and number of extracted rules. | en |
dc.language | en | es |
dc.subject | Rule extraction | en |
dc.subject | Intelligent agents | es |
dc.subject | base de datos | es |
dc.subject | classification | en |
dc.subject | large datasets | en |
dc.subject | supervised learning | en |
dc.title | CLUIN – A new method for extracting rules for large databases | en |
dc.type | Objeto de conferencia | es |
sedici.creator.person | Hasperué, Waldo | es |
sedici.creator.person | Corbalán, Leonardo César | es |
sedici.description.note | Eje: Workshop Agentes y sistemas inteligentes (WASI) | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática (RedUNCI) | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
sedici.date.exposure | 2012-10 | |
sedici.relation.event | XVIII Congreso Argentino de Ciencias de la Computación | es |
sedici.description.peerReview | peer-review | es |