Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-11-08T12:52:21Z
dc.date.available 2012-11-08T12:52:21Z
dc.date.issued 2006-08
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/23866
dc.description.abstract In cases of extremely imbalanced dataset with high dimensions, standard machine learning techniques tend to be overwhelmed by the large classes. This paper rebalances skewed datasets by compressing the majority class. This approach combines Vector Quantization and Support Vector Machine and constructs a new approach, VQ-SVM, to rebalance datasets without significant information loss. Some issues, e.g. distortion and support vectors, have been discussed to address the trade-off between the information loss and undersampling. Experiments compare VQ-SVM and standard SVM on some imbalanced datasets with varied imbalance ratios, and results show that the performance of VQ-SVM is superior to SVM, especially in case of extremely imbalanced large datasets. en
dc.language en es
dc.subject Base de Datos es
dc.title Combine vector quantization and support vector machine for imbalanced datasets en
dc.type Objeto de conferencia es
sedici.identifier.isbn 0-387-34654-6 es
sedici.creator.person Yu, Ting es
sedici.creator.person Debenham, John es
sedici.creator.person Jan, Tony es
sedici.creator.person Simoff, Simeon es
sedici.description.note IFIP International Conference on Artificial Intelligence in Theory and Practice - Integration of AI with other Technologies es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2006-08
sedici.relation.event 19 th IFIP World Computer Congress - WCC 2006 es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)