Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-11-08T15:19:08Z
dc.date.available 2012-11-08T15:19:08Z
dc.date.issued 1997
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/23894
dc.description.abstract Migration of individuals allows a fruitful interaction between subpopulations in the island model, a well known distributed approach for evolutionary computing, where separate subpopulations evolve in parallel. This model is well suited for a distributed environment running a Single Program Multiple Data (SPMD) scheme. Here, the same Genetic Algorithm (GA) is replicated in many processors and attempting better convergence, through an expected improvement on genetic diversity, selected individuals are exchanged periodically. For exchanging, an individual is selected from a source subpopulation and then exported towards a target subpopulation. Usually, the imported string is accepted on arrival and then inserted into the target subpopulation. Our earlier experiments on controlled migration showed an improvement on results when contrasted against those obtained by conventional migration approaches. This paper describes extended implementations of alternative strategies to oversee migration in asynchronous schemes for an island model and enlarges a previous work on three processors with a set of softer testing functions [9]. All of them try to decrease the risk of premature convergence. A first strategy attempts to prevent unbalanced propagation of genotypes by applying an acceptance threshold parameter to each incoming string. A second one permits independent evolution of subpopulations and acts only when a possible stagnation is detected. In such condition an attempt to evade falling towards a local optimum is done by inserting an expected dissimilar individual to improve genetic diversity. A third alternative strategy combines both previous mentioned strategies. The results presented are those obtained on the functions that showed to be more difficult for the island model using a replication of a simple GA. A description of the corresponding system architecture supporting the PGA implementation is described and results for the parallel distributed approach among 3, 6 and 12 processors is discussed. en
dc.language en es
dc.subject Parallel algorithms es
dc.subject Parallel genetic algorithms en
dc.subject Parallel processing es
dc.subject island model en
dc.subject Distributed es
dc.subject migration schemes en
dc.subject acceptance threshold en
dc.subject dynamic arbiter en
dc.title Alternative strategies for asynchronous migration-controlled schemes in parallel genetic algorithms en
dc.type Objeto de conferencia es
sedici.creator.person Ochoa, Claudio es
sedici.creator.person Gallard, Raúl Hector es
sedici.description.note Eje: Procesamiento distribuido y paralelo. Tratamiento de señales es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 1997
sedici.relation.event III Congreso Argentino de Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)