Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-11-09T14:18:07Z
dc.date.available 2012-11-09T14:18:07Z
dc.date.issued 2006-08
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/23971
dc.description.abstract Associating the pattern in text data with the pattern with time series data is a novel task. In this paper, an approach that utilizes the features of the time series data and domain knowledge is proposed and used to identify the patterns for exchange rate modeling. A set of rules to identify the patterns are firstly specified using domain knowledge. The text data are then associated with the exchange rate data and pre- classified according to the trend of the time series. The rules are further refined by the characteristics of the pre-classified data. Classification solely based on time series data requires precise and timely data, which are difficult to obtain from financial market reports. On the other hand, domain knowledge is often very expensive to be acquired and often has a modest inter-rater reliability. The proposed method combines both methods, leading to a “grey box” approach that can handle the data with some time delay and overcome these drawbacks. en
dc.language en es
dc.subject Expert system tools and techniques es
dc.subject Patterns es
dc.title Identification of important news for exchange rate modeling en
dc.type Objeto de conferencia es
sedici.identifier.isbn 0-387-34654-6 es
sedici.creator.person Zhang, Debbie es
sedici.creator.person Simoff, Simeon es
sedici.creator.person Debenham, John es
sedici.description.note IFIP International Conference on Artificial Intelligence in Theory and Practice - Expert Systems es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2006-08
sedici.relation.event 19 th IFIP World Computer Congress - WCC 2006 es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)