Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2013-09-23T16:22:17Z
dc.date.available 2013-09-23T16:22:17Z
dc.date.issued 2010
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/29607
dc.description.abstract Background: Fieldwork has thoroughly established that most eggs are intensely predated. Among the few exceptions are the aerial egg clutches from the aquatic snail Pomacea canaliculata which have virtually no predators. Its defenses are advertised by the pigmented ovorubin perivitellin providing a conspicuous reddish coloration. The nature of the defense however, was not clear, except for a screening for defenses that identified a neurotoxic perivitellin with lethal effect on rodents. Ovorubin is a proteinase inhibitor (PI) whose role to protect against pathogens was taken for granted, according to the prevailing assumption. Through biochemical, biophysical and feeding experiments we studied the proteinase inhibitor function of ovorubin in egg defenses. Methodology/Principal Findings: Mass spectrometry sequencing indicated ovorubin belongs to the Kunitz-type serine proteinase inhibitor family. It specifically binds trypsin as determined by small angle X-ray scattering (SAXS) and crosslinking studies but, in contrast to the classical assumption, it does not prevent bacterial growth. Ovorubin was found extremely resistant to in vitro gastrointestinal proteolysis. Moreover feeding studies showed that ovorubin ingestion diminishes growth rate in rats indicating that this highly stable PI is capable of surviving passage through the gastrointestinal tract in a biologically active form. Conclusions: To our knowledge, this is the first direct evidence of the interaction of an egg PI with a digestive protease of potential predators, limiting predator's ability to digest egg nutrients. This role has not been reported in the animal kingdom but it is similar to plant defenses against herbivory. Further, this would be the only defense model with no tradeoffs between conspicuousness and noxiousness by encoding into the same molecule both the aposematic warning signal and an antinutritive/antidigestive defense. These defenses, combined with a neurotoxin and probably unpalatable factors would explain the near absence of predators, opening new perspectives in the study of the evolution and ecology of egg defensive strategies. en
dc.language en es
dc.subject Caracoles es
dc.subject predadores es
dc.subject Inhibidores de Serina Proteinasa es
dc.subject embriones es
dc.subject nutrientes es
dc.title The role of the proteinase inhibitor ovorubin in apple snail eggs resembles plant embryo defense against predation en
dc.type Articulo es
sedici.identifier.uri http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0015059 es
sedici.identifier.other pmid:21151935
sedici.identifier.other https://doi.org/10.1371/journal.pone.0015059
sedici.identifier.other eid:2-s2.0-78649967667
sedici.identifier.issn 1932-6203 es
sedici.creator.person Dreon, Marcos Sebastián es
sedici.creator.person Ituarte, Santiago es
sedici.creator.person Heras, Horacio es
sedici.subject.materias Ciencias Naturales es
sedici.subject.materias Bioquímica es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Naturales y Museo es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 2.5 Argentina (CC BY 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by/2.5/ar/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle PLoS ONE es
sedici.relation.journalVolumeAndIssue vol. 5, no. 12 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 2.5 Argentina (CC BY 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 2.5 Argentina (CC BY 2.5)