Busque entre los 166432 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2013-11-29T20:04:29Z | |
dc.date.available | 2013-11-29T20:04:29Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/31580 | |
dc.description.abstract | Gesture recognition is a major area of interest in human-computer interaction. Recent advances in sensor technology and Computer power has allowed us to perform real-time joint tracking with com-modity hardware, but robust, adaptable, user-independent usable hand gesture classification remains an open problem. Since it is desirable that users can record their own gestures to expand their gesture vocabulary, a method that performs well on small training sets is required. We propose a novel competitive neural classifier (CNC) that recognizes arabic numbers hand gestures with a 98% success rate, even when trained with a small sample set (3 gestures per class). The approach uses the direction of movement between gesture sampling points as features and is time, scale and translation invariant. By using a technique borrowed from ob-ject and speaker recognition methods, it is also starting-point invariant, a new property we define for closed gestures. We found its performance to be on par with standard classifiers for temporal pattern recognition. | en |
dc.language | en | es |
dc.subject | gesture recognition | en |
dc.subject | Neural nets | es |
dc.subject | scale invariant | en |
dc.subject | Object recognition | es |
dc.subject | speed invariant starting | en |
dc.subject | point invariant | en |
dc.subject | neural network | en |
dc.subject | CPN | en |
dc.subject | competitive | en |
dc.title | A novel competitive neural classifier for gesture recognition with small training sets | en |
dc.type | Objeto de conferencia | es |
sedici.creator.person | Quiroga, Facundo | es |
sedici.creator.person | Corbalán, Leonardo César | es |
sedici.description.note | XIV Workshop Agentes y Sistemas Inteligentes. | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática (RedUNCI) | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
sedici.date.exposure | 2013-10 | |
sedici.relation.event | XVIII Congreso Argentino de Ciencias de la Computación (CACIC) | es |
sedici.description.peerReview | peer-review | es |