Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2014-04-08T18:43:24Z
dc.date.available 2014-04-08T18:43:24Z
dc.date.issued 2013-12
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/34505
dc.description.abstract Progress in the parallel programming field has allowed scientific applications to be developed with more complexity and accuracy. However, such precision requires greater computational power in order to be executed. How- ever, updating the local systems could be considered an expensive decision. For this reason, cloud computing is emerging as a commercial infrastructure that allows us to eliminate maintaining the computing hardware. For this reason, cloud is promising to be a computing alternative to clusters, grids and supercomputing for executing these applications. In this sense, this work is focused on describing the manner of migrating our prediction tool PAS2P (parallel application signature for performance prediction), and how we have to analyze our method for executing SPMD ap- plications efficiently on these cloud environments. In both cases, cloud could be considered a huge challenge due to the environment virtualization and the communication heterogeneities, which can seriously affect the application performance. However, our experimental evaluations make it clear that our prediction tool can predict with an error rate lower than 6,46%, considering that the signature for prediction represents a small portion of the execution time. On the other hand, analyzing the application parameters over the cloud computing allows us to find through an analytical model, which is the ideal number of virtual cores needed to obtain the maximum speedup under a defined efficiency. In this case the error rate was lower that 9% for the application tested. en
dc.format.extent 123-129 es
dc.language en es
dc.subject performance en
dc.subject PAS2P en
dc.subject prediction en
dc.subject SPMD en
dc.subject cloud en
dc.title Migration of tools and methodologies for performance prediction and efficient HPC on cloud environments: results and conclusion en
dc.type Articulo es
sedici.identifier.uri http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Dec13-3.pdf es
sedici.identifier.issn 1666-6038 es
sedici.creator.person Muresano, Ronal es
sedici.creator.person Wong, Alvaro es
sedici.creator.person Rexachs del Rosario, Dolores es
sedici.creator.person Luque Fadón, Emilio es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc/3.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Computer Science & Technology es
sedici.relation.journalVolumeAndIssue vol. 13, no. 3 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)