Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2014-04-11T18:41:27Z
dc.date.available 2014-04-11T18:41:27Z
dc.date.issued 2010-10-27
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/34620
dc.description.abstract In this review we provide a systematic analysis of transcriptomic signatures derived from 42 breast cancer gene expression studies, in an effort to identify the most relevant breast cancer biomarkers using a meta-analysis method. Meta-data revealed a set of 117 genes that were the most commonly affected ranging from 12% to 36% of overlap among breast cancer gene expression studies. Data mining analysis of transcripts and protein-protein interactions of these commonly modulated genes indicate three functional modules signifcantly affected among signatures, one module related with the response to steroid hormone stimulus, and two modules related to the cell cycle. Analysis of a publicly available gene expression data showed that the obtained meta-signature is capable of predicting overall survival (P < 0.0001) and relapse-free survival (P < 0.0001) in patients with early-stage breast carcinomas. In addition, the identifed meta-signature improves breast cancer patient stratifcation independently of traditional prognostic factors in a multivariate Cox proportional-hazards analysis. en
dc.format.extent 103-118 es
dc.language en es
dc.subject biomarkers en
dc.subject APC protein en
dc.subject aurora A kinase en
dc.subject breast cancer en
dc.subject Bub1 related protein en
dc.subject gene expression signatures en
dc.subject cyclin en
dc.subject estrogen receptor alpha en
dc.subject forkhead transcription factor en
dc.subject hepatocyte nuclear factor 3alpha en
dc.subject manganese superoxide dismutase en
dc.subject TTK protein kinase en
dc.subject ubiquitin conjugating enzyme en
dc.subject microarray analysis en
dc.subject mitosis spindle en
dc.title Breast cancer biomarker discovery in the functional genomic age: A systematic review of 42 gene expression signatures en
dc.type Articulo es
sedici.identifier.uri http://www.la-press.com/breast-cancer-biomarker-discovery-in-the-functional-genomic-age-a-syst-article-a2325 es
sedici.identifier.other https://doi.org/10.4137/BMI.S5740
sedici.identifier.other eid:2-s2.0-78650555583
sedici.identifier.issn 1177-2719 es
sedici.creator.person Abba, Martín Carlos es
sedici.creator.person Lacunza, Ezequiel es
sedici.creator.person Butti, Matías A. es
sedici.creator.person Aldaz, C. Marcelo es
sedici.subject.materias Ciencias Médicas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Médicas es
sedici.subtype Revision es
sedici.rights.license Creative Commons Attribution 3.0 Unported (CC BY 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by/3.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Biomarker Insights es
sedici.relation.journalVolumeAndIssue vol. 2010, no. 5 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 3.0 Unported (CC BY 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 3.0 Unported (CC BY 3.0)