Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2014-10-22T17:05:10Z
dc.date.available 2014-10-22T17:05:10Z
dc.date.issued 2014-11
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/41737
dc.description.abstract In order to reach higher degrees of flexibility, adaptability and autonomy in manufacturing systems, it is essential to develop new rescheduling methodologies which resort to cognitive capabilities, similar to those found in human beings. Artificial cognition is important for designing planning and control systems that generate and represent knowledge about heuristics for repairbased scheduling. Rescheduling knowledge in the form of decision rules is used to deal with unforeseen events and disturbances reactively in real time, and take advantage of the ability to act interactively with the user to counteract the effects of disruptions. In this work, to achieve the aforementioned goals, a novel approach to generate rescheduling knowledge in the form of dynamic first-order logical rules is proposed. The proposed approach is based on the integration of reinforcement learning with artificial cognitive capabilities involving perception and reasoning/learning skills embedded in the Soar cognitive architecture. An industrial example is discussed showing that the approach enables the scheduling system to assess its operational range in an autonomic way, and to acquire experience through intensive simulation while performing repair tasks. en
dc.format.extent 115-122 es
dc.language en es
dc.subject rescheduling en
dc.subject Inteligencia Artificial es
dc.subject cognitive architecture en
dc.subject manofacturing systems en
dc.subject reinforcement learing en
dc.subject soar en
dc.title Generating rescheduling knowledge using reinforcement learning in a cognitive architecture en
dc.type Objeto de conferencia es
sedici.identifier.uri http://43jaiio.sadio.org.ar/proceedings/ASAI/15.pdf es
sedici.identifier.issn 1850-2784 es
sedici.creator.person Palombarini, Jorge es
sedici.creator.person Barsce, Juan Cruz es
sedici.creator.person Martínez, Ernesto es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa (SADIO) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution 3.0 Unported (CC BY 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by/3.0/
sedici.date.exposure 2014-11
sedici.relation.event XLIII Jornadas Argentinas de Informática e Investigación Operativa (43JAIIO)-XV Argentine Symposium on Artificial Intelligence (ASAI) (Buenos Aires, 2014) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 3.0 Unported (CC BY 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 3.0 Unported (CC BY 3.0)