Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2014-10-23T21:12:18Z
dc.date.available 2014-10-23T21:12:18Z
dc.date.issued 2014
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/41850
dc.description.abstract This thesis attempts to exploit the deductive capabilities of the semantic rea- soners to automate the supervision task through a knowledge-driven approach. With that aim, we have explored the characteristics of DL-based modeling and reasoning to support qualitative supervision methods. The emphasis have been placed in multivariate data analysis. Through them, failures are detected and diagnosed using patterns of qualitative symptoms (i.e. Fault Signatures) that involve several process variables. en
dc.format.extent 23-24 es
dc.language en es
dc.subject Modeling of computer architecture es
dc.subject Semantic networks es
dc.title Towards a semantic-based process supervision en
dc.type Objeto de conferencia es
sedici.identifier.uri http://43jaiio.sadio.org.ar/proceedings/IJCAI/23-24.pdf es
sedici.identifier.issn 2362-5120 es
sedici.creator.person Roda, Fernando es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa (SADIO) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution 3.0 Unported (CC BY 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by/3.0/
sedici.date.exposure 2014-09
sedici.relation.event XLIII Jornadas Argentinas de Informática e Investigación Operativa (43JAIIO)-Doctoral Consortium (IJCAI) (Buenos Aires, 2014) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 3.0 Unported (CC BY 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 3.0 Unported (CC BY 3.0)