Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2016-06-09T14:44:50Z
dc.date.available 2016-06-09T14:44:50Z
dc.date.issued 2013-06
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/53310
dc.description.abstract The brain processes temporal statistics to predict future events and to categorize perceptual objects. These statistics, called expectan- cies, are found in music perception, and they span a variety of different features and time scales. Specifically, there is evidence that music perception involves strong expectancies regarding the distri- bution of a melodic interval, namely, the distance between two consecutive notes within the context of another. The recent availability of a large Western music dataset, consisting of the historical record condensed as melodic interval counts, has opened new possibilities for data-driven analysis of musical perception. In this context, we present an analytical approach that, based on cognitive theories of music expectation and machine learning techniques, recovers a set of factors that accurately identifies historical trends and stylistic transitions between the Baroque, Classical, Romantic, and Post-Romantic periods. We also offer a plausible musicological and cognitive interpretation of these factors, allowing us to propose them as data-driven principles of melodic expectation. en
dc.language en es
dc.subject pattern recognition; psychology; computational cognition; culturomics en
dc.title Perceptual basis of evolving Western musical styles en
dc.type Articulo es
sedici.identifier.uri http://www.pnas.org/content/110/24/10034.full.pdf es
sedici.identifier.issn 0027-8424 es
sedici.creator.person Shifres, Favio es
sedici.creator.person Rodríguez Zivic, Pablo H. es
sedici.creator.person Cecchi, Guillermo A. es
sedici.subject.materias Bellas Artes es
sedici.subject.materias Música es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Bellas Artes es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Proceedings of the National Academy of Science of the United States of America es
sedici.relation.journalVolumeAndIssue vol. 110, no. 24 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)