Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2016-10-12T14:29:21Z
dc.date.available 2016-10-12T14:29:21Z
dc.date.issued 2016
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/55739
dc.description.abstract Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. In this paper we compare three different adaptive algorithms that include strategies to modify the mutation probability without external control. One adaptive strategy uses the genetic diversity present in the population to update the mutation probability. Other strategy is based on the ideas of reinforcement learning and the last one varies the probabilities of mutation depending on the fitness values of the solution. All these strategies eliminate a very expensive computational phase related to the pre-tuning of the algorithmic parameters. The empirical comparisons show that if the genetic algorithm uses the genetic diversity, as the strategy for adapting the mutation probability outperforms the other two strategies. en
dc.format.extent 75-84 es
dc.language en es
dc.subject adaptive algorithms en
dc.subject Algoritmos es
dc.subject mutation probability en
dc.title Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms en
dc.type Objeto de conferencia es
sedici.creator.person Stark, Natalia es
sedici.creator.person Minetti, Gabriela F. es
sedici.creator.person Salto, Carolina es
sedici.description.note XVII Workshop Agentes y Sistemas Inteligentes (WASI). es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2016-10
sedici.relation.event XXII Congreso Argentino de Ciencias de la Computación (CACIC 2016). es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/55718 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)