Busque entre los 168474 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2016-10-12T14:29:21Z | |
dc.date.available | 2016-10-12T14:29:21Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/55739 | |
dc.description.abstract | Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. In this paper we compare three different adaptive algorithms that include strategies to modify the mutation probability without external control. One adaptive strategy uses the genetic diversity present in the population to update the mutation probability. Other strategy is based on the ideas of reinforcement learning and the last one varies the probabilities of mutation depending on the fitness values of the solution. All these strategies eliminate a very expensive computational phase related to the pre-tuning of the algorithmic parameters. The empirical comparisons show that if the genetic algorithm uses the genetic diversity, as the strategy for adapting the mutation probability outperforms the other two strategies. | en |
dc.format.extent | 75-84 | es |
dc.language | en | es |
dc.subject | adaptive algorithms | en |
dc.subject | Algoritmos | es |
dc.subject | mutation probability | en |
dc.title | Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms | en |
dc.type | Objeto de conferencia | es |
sedici.creator.person | Stark, Natalia | es |
sedici.creator.person | Minetti, Gabriela F. | es |
sedici.creator.person | Salto, Carolina | es |
sedici.description.note | XVII Workshop Agentes y Sistemas Inteligentes (WASI). | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática (RedUNCI) | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.date.exposure | 2016-10 | |
sedici.relation.event | XXII Congreso Argentino de Ciencias de la Computación (CACIC 2016). | es |
sedici.description.peerReview | peer-review | es |
sedici.relation.isRelatedWith | http://sedici.unlp.edu.ar/handle/10915/55718 | es |