Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2016-11-16T12:41:31Z
dc.date.available 2016-11-16T12:41:31Z
dc.date.issued 2016
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/56759
dc.description.abstract Identification of individuals in marine species, especially in Cetacea, is a critical task in several biological and ecological endeavours. Most of the times this is performed through human-assisted matching within a set of pictures taken in different campaigns during several years and spread around wide geographical regions. This requires that the scientists perform laborious tasks in searching through archives of images, demanding a significant cognitive burden which may be prone to intra and inter observer operational errors. On the other hand, additional available information, in particular the metadata associated to every image, is not fully taken advantage of. The present work presents the result of applying machine learning techniques over the metadata of archives of images as an aid in the process of manual identification. The method was tested on a database containing several pictures of 230 different Commerson’s dolp hins (Cephalorhynchus commersoni) taken over a span of seven years. A supervised classifier trained with identifications made by the researchers was able to identify correctly above 90% of the individuals on the test set using only the metadata present in the image files. This reduces significantly the number of images to be manually compared, and therefore the time and errors associated with the assisted identification process. en
dc.format.extent 765-774 es
dc.language en es
dc.subject machine learning en
dc.subject photo-identification en
dc.title Wild Cetacean Identification using Image Metadata en
dc.type Objeto de conferencia es
sedici.creator.person Pollicelli, Débora es
sedici.creator.person Coscarella, Mariano es
sedici.creator.person Delrieux, Claudio es
sedici.description.note XIII Workshop Bases de datos y Minería de Datos (WBDMD). es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2016-10
sedici.relation.event XXII Congreso Argentino de Ciencias de la Computación (CACIC 2016). es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/55718 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)