Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2016-11-17T15:03:23Z
dc.date.available 2016-11-17T15:03:23Z
dc.date.issued 2016-11-17
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/56824
dc.description.abstract In this work, we examine the socio-economic correlations present among users in a mobile phone network in Mexico. First, we find that the distribution of income for a subset of users –for which we have income information given by a large bank in Mexico– follows closely, but not exactly, the income distribution for the whole population of Mexico. We also show the existence of a strong socio-economic homophily in the mobile phone network, where users linked in the network are more likely to have similar income. The main contribution of this work is that we leverage this homophily in order to propose a methodology, based on Bayesian statistics, to infer the socio-economic status for a large subset of users in the network (for which we have no banking information). With our proposed algorithm, we achieve an accuracy of 0.71 in a two-class classification problem (low and high income) which significantly outperforms a simpler method based on a frequentist approach. Finally, we extend the two-class classification problem to multiple classes by using the Dirichlet distribution. en
dc.format.extent 95-106 es
dc.language en es
dc.subject mobile phone network en
dc.subject socio-economic correlations en
dc.title Inference of Socioeconomic Status in a Communication Graph en
dc.type Objeto de conferencia es
sedici.identifier.uri http://45jaiio.sadio.org.ar/sites/default/files/AGRANDA-09.pdf es
sedici.identifier.issn 2451-7569 es
sedici.creator.person Fixman, Martín es
sedici.creator.person Berenstein, Ariel es
sedici.creator.person Brea, Jorge es
sedici.creator.person Minnoni, Martín es
sedici.creator.person Sarraute, Carlos es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa (SADIO) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-sa/3.0/
sedici.date.exposure 2016-09
sedici.relation.event Simposio Argentino de GRANdes DAtos (AGRANDA 2016) - JAIIO 45 (Tres de Febrero, 2016) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)