Busque entre los 169024 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2016-11-22T16:32:35Z | |
dc.date.available | 2016-11-22T16:32:35Z | |
dc.date.issued | 2016-11-22 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/56980 | |
dc.description.abstract | Dimensionality reduction using feature extraction and selection approaches is a common stage of many regression and classification tasks. In recent years there have been significant e orts to reduce the dimension of the feature space without lossing information that is relevant for prediction. This objective can be cast into a conditional independence condition between the response or class labels and the transformed features. Building on this, in this work we use measures of statistical dependence to estimate a lower-dimensional linear subspace of the features that retains the su cient information. Unlike likelihood-based and many momentbased methods, the proposed approach is semi-parametric and does not require model assumptions on the data. A regularized version to achieve simultaneous variable selection is presented too. Experiments with simulated data show that the performance of the proposed method compares favorably to well-known linear dimension reduction techniques. | en |
dc.format.extent | 142-149 | es |
dc.language | en | es |
dc.subject | dimension reduction | en |
dc.subject | variable selection | en |
dc.subject | dependence measures | en |
dc.subject | supervised learning | en |
dc.title | Feature extraction and selection using statistical dependence criteria | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.uri | http://45jaiio.sadio.org.ar/sites/default/files/ASAI-13_0.pdf | es |
sedici.identifier.issn | 2451-7585 | es |
sedici.creator.person | Tomassi, Diego | es |
sedici.creator.person | Marx, Nicolás | es |
sedici.creator.person | Beauseroy, Pierre | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa (SADIO) | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-sa/3.0/ | |
sedici.date.exposure | 2016-09 | |
sedici.relation.event | Simposio Argentino de Inteligencia Artificial (ASAI 2016) - JAIIO 45 (Tres de Febrero, 2016). | es |
sedici.description.peerReview | peer-review | es |