Busque entre los 168452 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2016-11-23T17:29:35Z | |
dc.date.available | 2016-11-23T17:29:35Z | |
dc.date.issued | 2016-11-23 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/57025 | |
dc.description.abstract | We proposed a novel approach for the optimisation of over-complete decompositions from a WPT dictionary based on a multi-objective genetic algorithm (MOGA). The MOGA allows to maximise the classification accuracy while minimising the number of features. For the purpose of obtaining appropriate features for state of the art speech recognizers, a classifier based on hidden Markov models (HMM) is used to estimate the capability of candidate solutions, using on a set of English phonemes. | en |
dc.format.extent | 131-133 | es |
dc.language | en | es |
dc.title | Multi-objective optimisation of wavelet features for phoneme recognition | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.uri | http://45jaiio.sadio.org.ar/sites/default/files/ASAI-20_0.pdf | es |
sedici.identifier.issn | 2451-7585 | es |
sedici.creator.person | Vignolo, Leandro | es |
sedici.creator.person | Rufiner, Hugo Leonardo | es |
sedici.creator.person | Milone, Diego H. | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa (SADIO) | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-sa/3.0/ | |
sedici.date.exposure | 2016-09 | |
sedici.relation.event | Simposio Argentino de Inteligencia Artificial (ASAI 2016) - JAIIO 45 (Tres de Febrero, 2016). | es |
sedici.description.peerReview | peer-review | es |