Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2016-12-13T17:48:37Z
dc.date.available 2016-12-13T17:48:37Z
dc.date.issued 2016-12-13
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/57434
dc.description.abstract Leaf Area Index (LAI) is a key input for many crop models. The LAI patterns measured in situ are time consuming and labor intensive and could be substituted by intelligent techniques of approximation as artificial neural networks (ANNs). The objective of this study was to evaluate the possibility to estimate the evolution of LAI and height of maize canopies in southeastern of Buenos Aires Province, Argentine using neural network models. A field experiment under non limiting condition was carried out to generate a range of environmental conditions (four planting dates and three hybrids with contrasting maturity). Periodical measurements of LAI on tagged plants were used to develop, evaluate and test the neural networks to approximate variation of leaf area index and height at plot scale. Data from canopy structure properties as leaf area, height and leaf area density profile were obtained by non-destructive methods. Planting date (PD), relative maturity of the hybrid (MR) and thermal time from emergence (TTE) were the inputs to the ANNs. A decomposition method based on Garson’s algorithm was applied to quantify the relative importance for each input variable. The method provides a better description of the knowledge learned by the networks during the training process. Sensitivity analysis was performed to identify relevant variables and quantify the risk of a given combination of variables. The RM showed a major contribution in ANNs to estimate LAI and HLL. Both trained ANNs were most sensitive to TTE than the remaining inputs. es
dc.format.extent 152-159 es
dc.language en es
dc.subject Buenos Aires (Argentina) es
dc.subject leaf area index en
dc.subject plant height en
dc.subject planting date en
dc.subject maturity class en
dc.title Neural network approach for estimating biophysical attributes during vegetative stages of potential canopies of maize in southeastern of Buenos Aires, Argentina en
dc.type Objeto de conferencia es
sedici.identifier.uri http://45jaiio.sadio.org.ar/sites/default/files/CAI-11.pdf es
sedici.identifier.issn 2525- 0949 es
sedici.creator.person Irigoyen, Andrea es
sedici.creator.person Maune, Carolina es
sedici.creator.person Bonelli, Lucas es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa (SADIO) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution 3.0 Unported (CC BY 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by/3.0/
sedici.date.exposure 2016-09
sedici.relation.event VIII Congreso Argentino de AgroInformática (CAI-2016) - JAIIO 45 (Tres de Febrero, 2016). es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 3.0 Unported (CC BY 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 3.0 Unported (CC BY 3.0)