Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2017-04-04T16:22:46Z
dc.date.available 2017-04-04T16:22:46Z
dc.date.issued 2015
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/59432
dc.description.abstract Online short-term load forecasts are needed for efficient demand management on power systems. To model the load, univariate and multivariate forecast approaches were developed: while the first consider the load as a linear function of its time series, the other also takes in account the nonlinear effects of weather-related variables (mainly the air temperature). Despite the wide recent literature on multivariate models, some authors state that univariate ones are sufficient for short-term purposes, claiming that including temperature variables unnecessarily elevates the model complexity, putting parsimony and robustness at risk. In this study, we compare the forecasts produced, for real data, by several univariate and multivariate time series and neural network-based load curve models. We then use a nonparametric hypothesis test to compare the daily mean errors of the best forecaster of each kind and, so, verify if considering the air temperature leads to any statistically significant improvement in the forecasting. en
dc.format.extent 143-151 es
dc.language en es
dc.subject Neural nets es
dc.subject short-term load forecasting en
dc.subject load curve models en
dc.subject exponential smoothing en
dc.title Univariate versus Multivariate Models for Short-term Electricity Load Forecasting en
dc.type Objeto de conferencia es
sedici.identifier.uri http://44jaiio.sadio.org.ar/sites/default/files/sio143-151.pdf es
sedici.identifier.issn 2451-7550 es
sedici.creator.person Neto, Guilherme G. es
sedici.creator.person Defilippo, Samuel B. es
sedici.creator.person Hippert, Henrique S. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa (SADIO) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution 3.0 Unported (CC BY 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by/3.0/
sedici.date.exposure 2015-09
sedici.relation.event XIII Simposio Argentino de Investigación Operativa (SIO) - JAIIO 44 (Rosario, 2015) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 3.0 Unported (CC BY 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 3.0 Unported (CC BY 3.0)