Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2017-09-25T14:24:57Z
dc.date.available 2017-09-25T14:24:57Z
dc.date.issued 2017-04
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/62569
dc.description.abstract La predicción del comportamiento de incendios forestales no es una tarea sencilla ya que dicho proceso se ve afectado por la falta de precisión o incertidumbre en los parámetros de entrada. En base a esto, resulta importante desarrollar métodos que permitan tratar la incertidumbre posibilitando la obtención de predicciones más precisas y confiables. En el presente trabajo se presenta un proyecto de desarrollo de un método de reducción de incertidumbre denominado Sistema Estadístico Evolutivo Híbrido con Modelo de Islas (HESS-IM). HESS-IM es un método que combina las bondades de tres metaheurísticas poblacionales evolutivas: Algoritmos Evolutivos, Evolución Diferencial y Optimización por Cúmulo de Partículas bajo un esquema de combinación colaborativa basado en migración mediante modelo de islas y HPC. Es importante mencionar que si bien el método se encuentra aún en desarrollo, existe una versión preliminar la cual ha sido implementada con Algoritmos Evolutivos y Evolución Diferencial. Ésta, ha obtenido resultados alentadores, ya que ha superado resultados obtenidos por metodologías previamente desarrolladas, sin considerar que aún resta realizar estudios más exhaustivos; los cuales podrían permitir obtener resultados de mayor calidad. es
dc.format.extent 970-973 es
dc.language es es
dc.subject Predicción es
dc.subject Heuristic methods es
dc.subject Incendios Forestales es
dc.title Método de reducción de incertidumbre basado en HPC y metaheurísticas híbridas aplicado a la predicción de incendios forestales es
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-987-42-5143-5 es
sedici.creator.person Méndez Garabetti, Miguel es
sedici.creator.person BIanchini, Germán es
sedici.creator.person Caymes Scutari, Paola es
sedici.creator.person Tardivo, María Laura es
sedici.description.note Eje: Procesamiento Distribuido y Paralelo. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2017-04
sedici.relation.event XIX Workshop de Investigadores en Ciencias de la Computación (WICC 2017, ITBA, Buenos Aires) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/61343 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)