Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2017-10-31T13:41:42Z
dc.date.available 2017-10-31T13:41:42Z
dc.date.issued 2017
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/63287
dc.description.abstract In these days, there are a growing interest in pattern recognition for tasks as predicting weather events, recommending best routes, intrusion detection or face detection. These tasks can be modelled as a classification problem, where a common alternative is using an ensemble model of classification. An usual ensemble model is given by Mixture of Experts model, which belongs to modular artificial neural networks consisting of two subcomponents type: networks of experts and Gating network, and whose combination creates an environment of competition among experts seeking to obtain patterns of the data source, in order to specialize in that particular task, all this supervised in the Gating network, which is the mediator agent and ponders the quality delivered by each expert model solution. We observe that this architecture assume that one gate influence one data point, consequently the training can be misleading to real datasets where the data is better explained by multiple experts. In this work, we present a variant of traditional MoE model, which consists of maximizing the entropy of the evaluation function in the Gating network in conjunction with standard error minimization. The results show the advantage of our approach in multiple datasets in terms of accuracy metric. As a future work, we plan to apply this idea to the Mixture-of-Experts with embedded feature selection. en
dc.language es es
dc.subject mixture of experts model en
dc.subject Network Architecture and Design es
dc.title Mezcla de expertos superpuestos con penalización entrópica es
dc.type Objeto de conferencia es
sedici.identifier.uri http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/SLMDI/SLMDI-14.pdf es
sedici.creator.person Peralta, Billy es
sedici.creator.person Saavedra, Ariel es
sedici.creator.person Caro, Luis es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa (SADIO) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-sa/3.0/
sedici.date.exposure 2017-09
sedici.relation.event Simposio Latinoamericano de Manejo de Datos e Información (SLMDI) - JAIIO 46 (Córdoba, 2017) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)