Busque entre los 170597 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2017-11-10T17:16:50Z | |
dc.date.available | 2017-11-10T17:16:50Z | |
dc.date.issued | 2017-10 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/63482 | |
dc.description.abstract | Every time a recommender system has a new user, it does not have enough information to generate recommendations with high precision, this is known as cold start. Adapting this problem to a classification problem allow us to apply Active Learning techniques that, as we well see, offer some methods to, given the less possible information about a new user, make right predictions with higher precision than the standard solutions applied in this situation. | en |
dc.format.extent | 23-32 | es |
dc.language | en | es |
dc.subject | recommender systems | en |
dc.subject | active learning | en |
dc.subject | cold start | en |
dc.title | Active Learning to Reduce Cold Start in Recommender Systems | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.isbn | 978-950-34-1539-9 | es |
sedici.creator.person | Silvi, Luciano | es |
sedici.description.note | Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI). | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática (RedUNCI) | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.date.exposure | 2017-10 | |
sedici.relation.event | XXIII Congreso Argentino de Ciencias de la Computación (La Plata, 2017). | es |
sedici.description.peerReview | peer-review | es |