Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2017-11-10T17:16:50Z
dc.date.available 2017-11-10T17:16:50Z
dc.date.issued 2017-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/63482
dc.description.abstract Every time a recommender system has a new user, it does not have enough information to generate recommendations with high precision, this is known as cold start. Adapting this problem to a classification problem allow us to apply Active Learning techniques that, as we well see, offer some methods to, given the less possible information about a new user, make right predictions with higher precision than the standard solutions applied in this situation. en
dc.format.extent 23-32 es
dc.language en es
dc.subject recommender systems en
dc.subject active learning en
dc.subject cold start en
dc.title Active Learning to Reduce Cold Start in Recommender Systems en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-1539-9 es
sedici.creator.person Silvi, Luciano es
sedici.description.note Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI). es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2017-10
sedici.relation.event XXIII Congreso Argentino de Ciencias de la Computación (La Plata, 2017). es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)