Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2017-11-10T17:27:42Z
dc.date.available 2017-11-10T17:27:42Z
dc.date.issued 2017-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/63485
dc.description.abstract Wildfires devastate thousands forests acres every year around the world. Fire behavior prediction is a useful tool to cooperate in the coordination, mitigation and management of available resources to fight against this type of contingencies. However, the prediction of this phenomenon is usually a difficult task due to the uncertainty in the prediction process. Therefore, several methods of uncertainty reduction have been developed, such as the Evolutionary Statistical System with Island Models based on Evolutionary Algorithms (ESSIM-EA). ESSIMEA focuses its operation on an Evolutionary Parallel Algorithm based on islands, in which the same configuration of evolutionary parameters is used. In this work we present an extension of the ESSIM-EA that allows each island to select an independent configuration of evolutionary parameters. The heterogeneous configuration proposed, at the island level, with the original methodology in three cases of controlled fires has been contrasted. The results show that the proposed ESSIM-EA extension allows to improve the quality of prediction and to reduce processing times. en
dc.format.extent 53-62 es
dc.language en es
dc.subject Heuristic methods es
dc.subject wildfire prediction en
dc.subject HPC en
dc.subject uncertainty reduction en
dc.title ESSIM-EA applied to Wildfire Prediction using Heterogeneous Configuration for Evolutionary Parameters en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-1539-9 es
sedici.creator.person Méndez Garabetti, Miguel es
sedici.creator.person BIanchini, Germán es
sedici.creator.person Caymes Scutari, Paola es
sedici.creator.person Tardivo, María Laura es
sedici.creator.person Gil Costa, Graciela Verónica es
sedici.description.note Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI). es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2017-10
sedici.relation.event XXIII Congreso Argentino de Ciencias de la Computación (La Plata, 2017). es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)