Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2017-12-05T17:04:59Z
dc.date.available 2017-12-05T17:04:59Z
dc.date.issued 2017-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/63933
dc.description.abstract The problem of detecting malicious behavior in network traffic has become an extremely difficult challenge for the security community. Consequently, several intelligence-based tools have been proposed to generate models capable of understanding the information traveling through the network and to help in the identification of suspicious connections as soon as possible. However, the lack of high-quality datasets has been one of the main obstacles in the developing of reliable intelligence-based tools. A well-labeled dataset is fundamental not only for the process of automatically learning models but also for testing its performance. Recently, RiskID emerged with the goal of providing to the network security community a collaborative tool for helping the labeling process. Through the use of visual and statistical techniques, RiskID facilitates to the user the generation of labeled datasets from real connections. In this article, we present a machine learning extension for RiskID, to help the user in the malware identification process. A preliminary study shows that as the size of labeled data increases, the use of machine learning models can be a valuable tool during the labeling process of future traffic connections. en
dc.format.extent 1269-1278 es
dc.language en es
dc.subject machine learning en
dc.subject dataset generation en
dc.subject network security en
dc.title Improving the Generation of Labeled Network Traffic Datasets Through Machine Learning Techniques en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-1539-9 es
sedici.creator.person Guerra, Jorge es
sedici.creator.person Catania, Carlos es
sedici.description.note VI Workshop de Seguridad Informática (WSI). es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2017-10
sedici.relation.event XXIII Congreso Argentino de Ciencias de la Computación (La Plata, 2017). es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)