Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2018-02-15T15:21:27Z
dc.date.available 2018-02-15T15:21:27Z
dc.date.issued 2017
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/64919
dc.description.abstract Time series are valuable sources of information for supporting planning activities. Transport, fishery, economy and finances are predominant sectors concerned into obtaining information in advance to improve their productivity and efficiency. During the last decades diverse linear and nonlinear forecasting models have been developed for attending this demand. However the achievement of accuracy follows being a challenge due to the high variability of the most observed phenomena. In this research are proposed two decomposition methods based on Singular Value Decomposition of a Hankel matrix (HSVD) in order to extract components of low and high frequency from a nonstationary time series. The proposed decomposition is used to improve the accuracy of linear and nonlinear autoregressive models. The evaluation of the proposed forecasters is performed through data coming from transport sector and fishery sector. Series of injured persons in traffic accidents of Santiago and Valparaíso and stock of sardine and anchovy of central-south Chilean coast are used. Further, for comparison purposes, it is evaluated the forecast accuracy reached by two decomposition techniques conventionally used, Singular Spectrum Analysis (SSA) and decomposition based on Stationary Wavelet Transform (SWT), both joint with linear and nonlinear autoregressive models. The experiments shown that the proposed methods based on Singular Value Decomposition of a Hankel matrix in conjunction with linear or nonlinear models reach the best accuracy for one-step and multi-step ahead forecasting of the studied time series. en
dc.language en es
dc.subject singular value decomposition en
dc.subject forecasting en
dc.subject linear models en
dc.subject wavelet decomposition en
dc.subject nonlinear models en
dc.subject singular spectrum analysis en
dc.title Multiscale Forecasting Models Based on Singular Values for Nonstationary Time Series en
dc.type Objeto de conferencia es
sedici.identifier.uri http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/CLTD/CLTD-01.pdf es
sedici.creator.person Barba Maggi, Lida es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa (SADIO) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-sa/4.0/
sedici.date.exposure 2017-09
sedici.relation.event III Concurso Latinoamericano de Tesis de Doctorado (CLTD-CLEI)- JAIIO 46 (Córdoba, 2017). es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)