Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2018-06-05T14:42:28Z
dc.date.available 2018-06-05T14:42:28Z
dc.date.issued 2018
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/67233
dc.description.abstract Muchos de los conjuntos de datos (data sets) existentes u obtenidos en investigaciones científicas contienen valores faltantes (MVs: Missing Values) y anomalías (outliers) asociados a procedimientos de entrada manuales deficientes, mediciones incorrectas o errores en los instrumentos de medición. En minería de datos (DM: Data Mining) estas imperfecciones pueden afectar negativamente la calidad del proceso de aprendizaje supervisado o el rendimiento de algoritmos de agrupamiento de datos. La imputación es una técnica para reemplazar MVs con valores sustituidos. Pocos estudios informan una evaluación global de los métodos existentes con el fin de proporcionar directrices para hacer la elección metodológica más apropiada en la práctica. El propósito general de este trabajo es determinar un modelo de decisión que permita encontrar los métodos de imputación más adecuados para completar información faltante en un conjunto de datos mediante la utilización de algoritmos de DM. es
dc.format.extent 195-199 es
dc.language es es
dc.subject valores faltantes es
dc.subject Data mining es
dc.subject imputación es
dc.subject modelo de decisión es
dc.title Modelo de decisión para la validación de métodos de imputación mediante la utilización de algoritmos de minería de datos es
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-987-3619-27-4 es
sedici.creator.person Primorac, Carlos R. es
sedici.creator.person Acosta, Julio César es
sedici.creator.person La Red Martínez, David L. es
sedici.description.note Eje: Bases de Datos y Minería de Datos. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2018-04
sedici.relation.event XX Workshop de Investigadores en Ciencias de la Computación (WICC 2018, Universidad Nacional del Nordeste). es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/67063 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)