Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2018-11-09T15:28:30Z
dc.date.available 2018-11-09T15:28:30Z
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/70649
dc.description.abstract Our work aims to perform the feature selection step on Multiple Kernel Learning by optimizing the Kernel Target Alignment score. It begins by building feature-wise gaussian kernel functions. Then by a constrained linear combination of the feature-wise kernels, we aim to increase the Kernel Target Alignment to obtain a new optimized custom kernel. The linear combination results in a sparse solution where only few kernels survive to improve KTA and consequently a reduced feature subset is obtained. Reducing considerably the original gene set allow to study deeper the selected genes for clinical purposes. The higher the KTA obtained, the better the feature selection, since we want to build custom kernels to use them for classification purposes later. The final kernel after optimizing the KTA is built by a linear combination of ‘Ki’ kernels, each one associated to a μi coefficient. The μ vector is computed during the optimization process. en
dc.format.extent 88-90 es
dc.language en es
dc.subject kernel target alignment en
dc.subject multiple kernel learning en
dc.subject somatic mutation en
dc.subject breast cancer en
dc.subject support vector classification en
dc.subject feature selection en
dc.title Learning Kernels from genetic profiles to discriminate tumor subtypes en
dc.type Objeto de conferencia es
sedici.identifier.uri http://47jaiio.sadio.org.ar/sites/default/files/AGRANDA-09.pdf es
sedici.identifier.issn 2451-7569 es
sedici.creator.person Palazzo, Martín es
sedici.creator.person Beauseroy, Pierre es
sedici.creator.person Koile, Daniel es
sedici.creator.person Yankilevich, Patricio es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Resumen es
sedici.rights.license Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-sa/3.0/
sedici.date.exposure 2018-09
sedici.relation.event IV Simposio Argentino de GRANdes DAtos (AGRANDA 2018) - JAIIO 47 (CABA, 2018) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)