Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2018-11-13T16:46:48Z
dc.date.available 2018-11-13T16:46:48Z
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/70690
dc.description.abstract Los foros orientados a temas de salud mental necesitan la supervisión de moderadores para brindar apoyo en casos delicados, como mensajes que expresan ideas suicidas. A medida que aumenta el tamaño del foro, la supervisión del moderador deja de ser factible sin la ayuda de sistemas automatizados de priorización. En el presente artículo presentamos un sistema de aprendizaje automático supervisado para el triaje (clasificación según severidad) de mensajes de un foro de salud mental. Este sistema fue desarrollado en el contexto de la competencia CLPsych 2017 shared task y sus resultados serán publicados en los Proceedings of the CLPsych 2018 workshop. El triaje consiste en clasificar cada mensaje de un foro de salud mental según la necesidad de intervención. Los niveles del triaje son: crisis, red, amber y green reflejando una prioridad decreciente en la atención de los moderadores del foro. El dataset de la competencia contiene 146030 mensajes sin etiquetar y 1588 mensajes etiquetados por especialistas: 1188 mensajes como training set y 400 mensajes como test set. Esta competencia fue una extensión de la realizada en el 2016. La mayoría de los enfoques en la literatura se centran en el contenido de los mensajes, pero sólo unos pocos autores aprovechan las atributos contextuales. En nuestro trabajo aplicamos un enfoque novedoso teniendo en cuenta no sólo atributos capaces de captar el contenido del mensaje sino también el contexto en el que se producen, considerando el historial de mensajes y la red de interacciones. es
dc.language es es
dc.subject triaje es
dc.subject foro es
dc.subject contenido del mensaje es
dc.subject contexto del mensaje es
dc.title Detección automática de casos urgentes en foro de salud mental es
dc.type Objeto de conferencia es
sedici.identifier.uri http://47jaiio.sadio.org.ar/sites/default/files/ASAI-04.pdf es
sedici.identifier.issn 2451-7585 es
sedici.creator.person Altszyler, Edgar es
sedici.creator.person Berenstein, Ariel J. es
sedici.creator.person Milne, David es
sedici.creator.person Calvo, Rafael es
sedici.creator.person Fernandez-Slezak, Diego es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Resumen es
sedici.rights.license Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-sa/3.0/
sedici.date.exposure 2018-09
sedici.relation.event XIX Simposio Argentino de Inteligencia Artificial (ASAI) - JAIIO 47 (CABA, 2018) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)