Busque entre los 168325 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2018-11-13T16:55:09Z | |
dc.date.available | 2018-11-13T16:55:09Z | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/70693 | |
dc.description.abstract | Interactive reinforcement learning (IRL) extends traditional reinforcement learning (RL) by allowing an agent to interact with parentlike trainers during a task. In this paper, we present an IRL approach using dynamic audio-visual input in terms of vocal commands and hand gestures as feedback. Our architecture integrates multi-modal information to provide robust commands from multiple sensory cues along with a confidence value indicating the trustworthiness of the feedback. The integration process also considers the case in which the two modalities convey incongruent information. Additionally, we modulate the influence of sensory-driven feedback in the IRL task using goal-oriented knowledge in terms of contextual affordances.We implement a neural network architecture to predict the effect of performed actions with different objects to avoid failed-states, i.e., states from which it is not possible to accomplish the task. In our experimental setup, we explore the interplay of multi-modal feedback and task-specific affordances in a robot cleaning scenario. We compare the learning performance of the agent under four different conditions: traditional RL, multi-modal IRL, and each of these two setups with the use of contextual affordances. Our experiments show that the best performance is obtained by using audio-visual feedback with affordance-modulated IRL. The obtained results demonstrate the importance of multi-modal sensory processing integrated with goaloriented knowledge in IRL tasks. | en |
dc.language | en | es |
dc.subject | interactive reinforcement learning | en |
dc.subject | affordances | en |
dc.subject | audio-visual feedback | en |
dc.subject | parent-like trainer | en |
dc.title | Multi-modal Feedback for Affordance-driven Interactive Reinforcement Learning | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.uri | http://47jaiio.sadio.org.ar/sites/default/files/ASAI-06.pdf | es |
sedici.identifier.issn | 2451-7585 | es |
sedici.creator.person | Cruz, Francisco | es |
sedici.creator.person | Parisi, Germán | es |
sedici.creator.person | Wermter, Stefan | es |
sedici.description.note | In press. Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), IEEE World Congress on Computational Intelligence (WCCI), Rio de Janeiro, Brazil, July 2018. | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa | es |
sedici.subtype | Resumen | es |
sedici.rights.license | Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-sa/3.0/ | |
sedici.date.exposure | 2018-09 | |
sedici.relation.event | XIX Simposio Argentino de Inteligencia Artificial (ASAI) - JAIIO 47 (CABA, 2018) | es |
sedici.description.peerReview | peer-review | es |