Busque entre los 166288 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2018-11-13T17:02:51Z | |
dc.date.available | 2018-11-13T17:02:51Z | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/70694 | |
dc.description.abstract | Successful modeling and prediction depend on effective methods for the extraction of domain-relevant variables. This paper proposes a methodology for identifying domain-specific terms. The proposed methodology relies on a collection of documents labeled as relevant or irrelevant to the domain under analysis. Based on the labeled document collection, we propose a supervised technique that weights terms based on their descriptive and discriminating power. Finally, the descriptive and discriminating values are combined into a general measure that, through the use of an adjustable parameter, allows to independently favor different aspects of retrieval such as maximizing precision or recall, or achieving a balance between both of them. The proposed technique is applied to the economic domain and is empirically evaluated through a human-subject experiment involving experts and non-experts in Economy. It is also evaluated as a term-weighting technique for query-term selection showing promising results. We finally illustrate the potential of the proposal as a first step for identifying different types of associations between words. | en |
dc.format.extent | 40-53 | es |
dc.language | en | es |
dc.subject | termweighting | en |
dc.subject | variable extraction | en |
dc.subject | information retrieval | en |
dc.subject | query- term selection | en |
dc.title | A Supervised Term-Weighting Method and its Application to Variable Extraction from Digital Media | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.uri | http://47jaiio.sadio.org.ar/sites/default/files/ASAI-07.pdf | es |
sedici.identifier.issn | 2451-7585 | es |
sedici.creator.person | Maisonnave, Mariano | es |
sedici.creator.person | Delbianco, Fernando | es |
sedici.creator.person | Tohmé, Fernando Abel | es |
sedici.creator.person | Maguitman, Ana Gabriela | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-sa/3.0/ | |
sedici.date.exposure | 2018-09 | |
sedici.relation.event | XIX Simposio Argentino de Inteligencia Artificial (ASAI) - JAIIO 47 (CABA, 2018) | es |
sedici.description.peerReview | peer-review | es |