Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2018-11-13T17:30:15Z
dc.date.available 2018-11-13T17:30:15Z
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/70699
dc.description.abstract Interactive reinforcement learning has become an important apprenticeship approach to speed up convergence in classic reinforcement learning problems. In this regard, a variant of interactive reinforcement learning is policy shaping which uses a parent-like trainer to propose the next action to be performed and by doing so reduces the search space by advice. On some occasions, the trainer may be another artificial agent which in turn was trained using reinforcement learning methods to afterward becoming an advisor for other learner-agents. In this work, we analyze internal representations and characteristics of artificial agents to determine which agent may outperform others to become a better trainer-agent. Using a polymath agent, as compared to a specialist agent, an advisor leads to a larger reward and faster convergence of the reward signal and also to a more stable behavior in terms of the state visit frequency of the learner-agents. Moreover, we analyze system interaction parameters in order to determine how influential they are in the apprenticeship process, where the consistency of feedback is much more relevant when dealing with different learner obedience parameters. en
dc.language en es
dc.subject interactive reinforcement learning en
dc.subject policy shape en
dc.subject artificial trainer-agent en
dc.subject cleaning scenario en
dc.title Improving interactive reinforcement learning: What makes a good teacher? en
dc.type Objeto de conferencia es
sedici.identifier.uri http://47jaiio.sadio.org.ar/sites/default/files/ASAI-09.pdf es
sedici.identifier.issn 2451-7585 es
sedici.creator.person Cruz, Francisco es
sedici.creator.person Magg, Sven es
sedici.creator.person Naga, Yukie es
sedici.creator.person Wermter, Stefan es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Resumen es
sedici.rights.license Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-sa/3.0/
sedici.date.exposure 2018-09
sedici.relation.event XIX Simposio Argentino de Inteligencia Artificial (ASAI) - JAIIO 47 (CABA, 2018) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith https://doi.org/10.1080/09540091.2018.1443318 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)