Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2018-11-14T15:02:40Z
dc.date.available 2018-11-14T15:02:40Z
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/70717
dc.description.abstract A gene regulatory network (GRN) is a collection of molecular regulators that interact with each other to govern the majority of the molecular processes. These networks play a central role in in every process of life, therefore, assembling these networks is rather significant. Since most of the GRN are hard to be mapped with accuracy by a mathematical model, the approaches that are called model-free have an advantage in modeling the complexities of dynamic molecular networks. In particular, a rule-based approach, which is a highly abstract model-free approach, offers several advantages performing data-driven analysis. One of these advantages is that it requires the least amount of data, another one is that its simplicity allows the inference of large size models with a higher speed of analysis. However, the resulting relational structure of the network is incomplete, for an effective biological analysis. This situation has driven us to explore the hybridization with other approaches, such as biclustering techniques. This applied technique finds new relations between the nodes of the existent GRN. In this abstract we present a new software, called GeRNeT that integrates the algorithms of GRNCOP2 and BiHEA along a set of tools for interactive visualization, statistical analysis and ontological enrichment of the resulting GRNs that it was published in Dussaut et al. [1]. In this regard, results associated with Alzheimer disease datasets are presented that show the usefulness of integrating both bioinformatics tools. es
dc.language en es
dc.subject machine learning en
dc.subject bioinformatics en
dc.subject gene regulatory networks en
dc.subject biclustering en
dc.subject gene expression analysis en
dc.title A Software Tool for Discovery of Gene Regulatory Networks: Analysis of Alzheimer Disease Data en
dc.type Objeto de conferencia es
sedici.identifier.uri http://47jaiio.sadio.org.ar/sites/default/files/ASAI-13.pdf es
sedici.identifier.issn 2451-7585 es
sedici.creator.person Dussaut, Julieta Sol es
sedici.creator.person Gallo, Cristian Andrés es
sedici.creator.person Cravero, Fiorella es
sedici.creator.person Martínez, María Jimena es
sedici.creator.person Carballido, Jessica Andrea es
sedici.creator.person Ponzoni, Ignacio es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Resumen es
sedici.rights.license Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-sa/3.0/
sedici.date.exposure 2018-09
sedici.relation.event XIX Simposio Argentino de Inteligencia Artificial (ASAI) - JAIIO 47 (CABA, 2018) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)