Busque entre los 169101 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2018-11-29T14:26:06Z | |
dc.date.available | 2018-11-29T14:26:06Z | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/71074 | |
dc.description.abstract | In this letter we study the application of the Fisher Vector (FV) to the problem of pixel-wise supervised classification of PolSAR images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real part of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive a FV from a mixture of real Wishart pdfs and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging datasets show the effectiveness of the approach. | en |
dc.language | en | es |
dc.subject | PolSAR | es |
dc.subject | fisher vectors | es |
dc.subject | image classification | es |
dc.title | Fisher Vectors for PolSAR Image Classification | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.uri | http://47jaiio.sadio.org.ar/sites/default/files/CAI-14.pdf | es |
sedici.identifier.issn | 2525-0949 | es |
sedici.creator.person | Redolfi, Javier A. | es |
sedici.creator.person | Sánchez, Jorge | es |
sedici.creator.person | Flesia, Ana Georgina | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa | es |
sedici.subtype | Resumen | es |
sedici.rights.license | Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-sa/3.0/ | |
sedici.date.exposure | 2018-09 | |
sedici.relation.event | X Congreso de AgroInformática (CAI) - JAIIO 47 (CABA, 2018) | es |
sedici.description.peerReview | peer-review | es |
sedici.relation.isRelatedWith | https://doi.org/10.1109/LGRS.2017.2750800 | es |