Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2018-12-14T12:35:05Z
dc.date.available 2018-12-14T12:35:05Z
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/71510
dc.description.abstract This paper assesses the capability of an spectrometer used in field experiments of soybean, maize and wheat. The objective of this work is to select different wavelengths intervals of the spectral reflectance curve, within the range 632-1125 nm, as features for classification using machine learning methods. Two different classifications are presented, species selection and growth stage identification. For species classification accuracy of 92% is reached, while 99% is obtained for stage classification. In addition we propose a new index that outperforms analyzed established vegetation indices, which shows the potential advantage of using this type of devices. en
dc.format.extent 374-387 es
dc.language en es
dc.subject remote sensing en
dc.subject NIR en
dc.subject spectral feature selection en
dc.title Identification and characterization of crops through the analysis of spectral data with machine learning algorithms en
dc.type Objeto de conferencia es
sedici.identifier.uri http://47jaiio.sadio.org.ar/sites/default/files/CAI-50.pdf es
sedici.identifier.issn 2525-0949 es
sedici.creator.person Rigalli, Nicolás Francisco es
sedici.creator.person Montero Bulacio, Enrique es
sedici.creator.person Romagnoli, Martín es
sedici.creator.person Terissi, Lucas D. es
sedici.creator.person Portapila, Margarita Isabel es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-sa/3.0/
sedici.date.exposure 2018-09
sedici.relation.event X Congreso de AgroInformática (CAI) - JAIIO 47 (CABA, 2018) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)