Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-03-12T14:15:31Z
dc.date.available 2019-03-12T14:15:31Z
dc.date.issued 2018
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/73034
dc.description.abstract Desde la aparición, en el año 2005, de los Histogramas de Gradientes Orientados (HOG) como descriptor para detección de peatones, han aparecido numerosas publicaciones que permitieron mejorar la clasificación agregando mejoras o comparando con nuevos descriptores. Del mismo modo, año a año aparecen nuevas bases de datos con imágenes de entornos reales, que permiten la evaluación de los modelos desarrollados. No obstante, la utilización de un modelo entrenado en un entorno real nuevo no siempre resulta trivial y es un tema pendiente de estudio para este dominio. En este artículo, presentamos un protocolo para evaluar la transferencia de aprendizaje entre tres de las bases de datos más utilizadas en la literatura: INRIA, Daimler y TUD-Brussels. Comparamos los descriptores HOG y Patrones Binarios Locales (LBP) en conjunto con Máquinas de Vectores de Soporte (SVM) como clasificador de base. Los resultados obtenidos muestran que si bien cada conjunto de datos presenta escenas del mundo real, existen diferencias significativas que hacen que un modelo entrenado con un conjunto de imágenes no funcione apropiadamente con otro. Por otro lado, encontramos que al entrenar un modelo con la mezcla de diferentes bases de datos permite una mayor transferencia de aprendizaje, si bien no siempre ayuda al entrenamiento de un conjunto de datos particular. es
dc.format.extent 52-61 es
dc.language es es
dc.subject detección de peatones es
dc.subject transferencia de aprendizaje es
dc.subject SVM en
dc.subject HOG en
dc.subject LBP it
dc.subject Daimler en
dc.subject Inria en
dc.subject TUD-Brussels en
dc.title Transferencia de aprendizaje para clasificación de peatones es
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-658-472-6 es
sedici.creator.person Camele, Genaro es
sedici.creator.person Quiroga, Facundo es
sedici.creator.person Ronchetti, Franco es
sedici.creator.person Hasperué, Waldo es
sedici.creator.person Lanzarini, Laura Cristina es
sedici.description.note XIX Workshop Agentes y Sistemas Inteligentes (WASI) es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2018-10
sedici.relation.event XXIV Congreso Argentino de Ciencias de la Computación (La Plata, 2018). es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)