Upload resources

Upload your works to SEDICI to increase its visibility and improve its impact

 

Show simple item record

dc.date.accessioned 2019-08-16T18:34:44Z
dc.date.available 2019-08-16T18:34:44Z
dc.date.issued 2016
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/79327
dc.description.abstract We considerer parabolic partial differential equations wt − (wx)x = r (x,t) under the conditions wx (a1, t) = k1 (t) wx (b1, t) = k2 (t) w (x, a2) = h1 (t) w (x, b2) = h2 (t) on a region E = (a1, b1) (a2, b2). We will see that we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse moments problem. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on moments problem. Also we consider the one-dimensional one-phase inverse Stefan problem. es
dc.format.extent 77-90 es
dc.language en es
dc.subject Parabolic PDEs es
dc.subject Freholm Integral Equations es
dc.subject Generalized Moment Problem es
dc.title Parabolic Partial Differential Equations as Inverse Moments Problem en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.4236/am.2016.71007
sedici.identifier.issn 2152-7393 es
sedici.creator.person Pintarelli, María Beatriz es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Grupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería (GAMEFI) es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Applied Mathematics es
sedici.relation.journalVolumeAndIssue vol. 7, no. 1 es


Download Files

This item appears in the following Collection(s)

Creative Commons Attribution 4.0 International (CC BY 4.0) Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International (CC BY 4.0)