Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-10-07T17:39:59Z
dc.date.available 2019-10-07T17:39:59Z
dc.date.issued 2015-07-27
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/82869
dc.description.abstract Alignment is essential in many areas such as biological, chemical and criminal forensics. The well‐known Smith–Waterman (SW) algorithm is able to retrieve the optimal local alignment with quadratic time and space complexity. There are several implementations that take advantage of computing parallelization, such as manycores, FPGAs or GPUs, in order to reduce the alignment effort. In this research, we adapt, develop and tune the SW algorithm named SWIMM on a heterogeneous platform based on Intel's Xeon and Xeon Phi coprocessor. SWIMM is a free tool available in a public git repository https://github.com/enzorucci/SWIMM. We efficiently exploit data and thread‐level parallelism, reaching up to 380 GCUPS on heterogeneous architecture, 350 GCUPS for the isolated Xeon and 50 GCUPS on Xeon Phi. Despite the heterogeneous implementation obtaining the best performance, it is also the most energy‐demanding. In fact, we also present a trade‐off analysis between performance and power consumption. The greenest configuration is based on an isolated multicore system that exploits AVX2 instruction set architecture reaching 1.5 GCUPS/Watts. en
dc.format.extent 5517-5537 es
dc.language en es
dc.subject Bioinformatics es
dc.subject Smith-Waterman es
dc.subject HPC es
dc.subject Intel Xeon Phi es
dc.subject Heterogeneous computing es
dc.subject Power consumption es
dc.title An energy‐aware performance analysis of SWIMM: Smith–Waterman implementation on Intel's Multicore and Manycore architectures en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.1002/cpe.3598 es
sedici.identifier.issn 1532-0634 es
sedici.creator.person Rucci, Enzo es
sedici.creator.person García Sanchez, Carlos es
sedici.creator.person Botella, Juan Guillermo es
sedici.creator.person De Giusti, Armando Eduardo es
sedici.creator.person Naiouf, Marcelo es
sedici.creator.person Prieto-Matias, Manuel es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Concurrency and Computation: Practice and Experience es
sedici.relation.journalVolumeAndIssue vol. 27 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)