Busque entre los 169024 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-10-17T13:53:19Z | |
dc.date.available | 2019-10-17T13:53:19Z | |
dc.date.issued | 2008 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/83464 | |
dc.description.abstract | Obtaining a bayesian network from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper, we define an automatic learning method that optimizes the bayesian networks applied to classification, using a hybrid method of learning that combines the advantages of the induction techniques of the decision trees with those of the bayesian networks. | en |
dc.format.extent | 439-443 | es |
dc.language | en | es |
dc.subject | mutual information | es |
dc.subject | Bayesian networks | es |
dc.subject | predictive capacity | es |
dc.subject | structural learning | es |
dc.title | Bayesian networks optimization based on induction learning techniques | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1007/978-0-387-09695-7_44 | es |
sedici.identifier.other | eid:2-s2.0-48949120910 | es |
sedici.identifier.issn | 1571-5736 | es |
sedici.creator.person | Britos, Paola Verónica | es |
sedici.creator.person | Felgaer, Pablo | es |
sedici.creator.person | García Martínez, Ramón | es |
sedici.subject.materias | Educación | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Informática | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | IFIP International Federation for Information Processing | es |
sedici.relation.journalVolumeAndIssue | vol. 276 | es |