Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-11-20T17:39:47Z
dc.date.available 2019-11-20T17:39:47Z
dc.date.issued 2015
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/85822
dc.description.abstract It is hard to bridge the gap between mathematical formulations and biological implementations of Turing patterns, yet this is necessary for both understanding and engineering these networks with synthetic biology approaches. Here, we model a reaction-diffusion system with two morphogens in a monostable regime, inspired by components that we recently described in a synthetic biology study in mammalian cells. The model employs a single promoter to express both the activator and inhibitor genes and produces Turing patterns over large regions of parameter space, using biologically interpretable Hill function reactions. We applied a stability analysis and identified rules for choosing biologically tunable parameter relationships to increase the likelihood of successful patterning. We show how to control Turing pattern sizes and time evolution by manipulating the values for production and degradation relationships. More importantly, our analysis predicts that steep dose-response functions arising from cooperativity are mandatory for Turing patterns. Greater steepness increases parameter space and even reduces the requirement for differential diffusion between activator and inhibitor. These results demonstrate some of the limitations of linear scenarios for reaction-diffusion systems and will help to guide projects to engineer synthetic Turing patterns. en
dc.format.extent 177-186 es
dc.language en es
dc.subject Cooperativity es
dc.subject Parameter space es
dc.subject Synthetic biology es
dc.subject Turing patterns es
dc.title Cooperativity to increase Turing pattern space for synthetic biology en
dc.type Articulo es
sedici.identifier.other doi:10.1021/sb500233u es
sedici.identifier.other eid:2-s2.0-84965190214 es
sedici.identifier.issn 2161-5063 es
sedici.creator.person Diambra, Luis Aníbal es
sedici.creator.person Senthivel, Vivek Raj es
sedici.creator.person Bárcena Menéndez, Diego es
sedici.creator.person Isalan, Mark es
sedici.subject.materias Biología es
sedici.description.fulltext true es
mods.originInfo.place Centro Regional de Estudios Genómicos es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle ACS Synthetic Biology es
sedici.relation.journalVolumeAndIssue vol. 4, no. 2 es
sedici.rights.sherpa * Color: white * Pre-print del autor: restricted * Post-print del autor: restricted * Versión de editor/PDF:cannot * Condiciones: >>On author's personal website, pre-print servers, institutional website, institutional repositories or subject repositories >>Non-Commercial >>Must be accompanied by set statement (see policy) >>Must link to publisher version >>Publisher's version/PDF cannot be used >>Publisher last reviewed on 19/09/2016 * Link a Sherpa: http://sherpa.ac.uk/romeo/issn/2161-5063/es/


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)