Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-11-21T14:38:17Z
dc.date.available 2019-11-21T14:38:17Z
dc.date.issued 2015
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/85874
dc.description.abstract We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observed galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs. en
dc.language en es
dc.subject galaxies: evolution es
dc.subject galaxies: formation es
dc.subject methods: numerical es
dc.subject methods: statistical es
dc.title Calibration of semi-analytic models of galaxy formation using particle swarm optimization en
dc.type Articulo es
sedici.identifier.other doi:10.1088/0004-637X/801/2/139 es
sedici.identifier.other eid:2-s2.0-84924662583 es
sedici.identifier.issn 0004-637X es
sedici.creator.person Ruiz, Andrés N. es
sedici.creator.person Cora, Sofía Alejandra es
sedici.creator.person Padilla, Nelson D. es
sedici.creator.person Domínguez, Mariano J. es
sedici.creator.person Vega Martínez, Cristian Antonio es
sedici.creator.person Tecce, Tomás E. es
sedici.creator.person Orsi, Álvaro es
sedici.creator.person Yaryura, Yamila es
sedici.creator.person García Lambas, Diego es
sedici.creator.person Gargiulo, Ignacio Daniel es
sedici.creator.person Muñoz Arancibia, Alejandra M. es
sedici.subject.materias Ciencias Astronómicas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Astronómicas y Geofísicas es
mods.originInfo.place Instituto de Astrofísica de La Plata es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle The Astrophysical Journal es
sedici.relation.journalVolumeAndIssue vol. 801, no. 2 es
sedici.rights.sherpa * Color: green * Pre-print del autor: can * Post-print del autor: can * Versión de editor/PDF:can * Condiciones: >>On any website, arXiv, scientific social networks (except Research Gate) or non-commercial open access repository. >>Publisher's version/PDF may be used on any website or authors' institutional repository >>Publisher copyright and source must be acknowledged >>Must link to publisher version >>Publisher's version/PDF may be used >>Authors depositing in arXiv must they choose the first licence statement offered by arXiv when uploading their article � a "non-exclusive licence to distribute" >>Publisher last contacted on 10/02/2016 >>Publisher last reviewed on 15/08/2017 * Link a Sherpa: http://sherpa.ac.uk/romeo/issn/0004-637X/es/


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)