Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-11-21T17:15:53Z
dc.date.available 2019-11-21T17:15:53Z
dc.date.issued 2016
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/85904
dc.description.abstract Speckle is being used as a characterization tool for the analysis of the dynamics of slow-varying phenomena occurring in biological and industrial samples at the surface or near-surface regions. The retrieved data take the form of a sequence of speckle images. These images contain information about the inner dynamics of the biological or physical process taking place in the sample. Principal component analysis (PCA) is able to split the original data set into a collection of classes. These classes are related to processes showing different dynamics. In addition, statistical descriptors of speckle images are used to retrieve information on the characteristics of the sample. These statistical descriptors can be calculated in almost real time and provide a fast monitoring of the sample. On the other hand, PCA requires a longer computation time, but the results contain more information related to spatial-temporal patterns associated to the process under analysis. This contribution merges both descriptions and uses PCA as a preprocessing tool to obtain a collection of filtered images, where statistical descriptors are evaluated on each of them. The method applies to slow-varying biological and industrial processes. en
dc.language en es
dc.subject dynamic speckle es
dc.subject principal components analysis es
dc.title Characterization of spatial-temporal patterns in dynamic speckle sequences using principal component analysis en
dc.type Articulo es
sedici.identifier.other doi:10.1117/1.OE.55.12.121705 es
sedici.identifier.other eid:2-s2.0-84974539358 es
sedici.identifier.issn 0091-3286 es
sedici.creator.person López Alonso, José Manuel es
sedici.creator.person Grumel, Eduardo Emilio es
sedici.creator.person Cap, Nelly Lucía es
sedici.creator.person Trivi, Marcelo Ricardo es
sedici.creator.person Rabal, Héctor Jorge es
sedici.creator.person Alda, Javier es
sedici.subject.materias Ingeniería es
sedici.subject.materias Ciencias Exactas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ingeniería es
mods.originInfo.place Centro de Investigaciones Ópticas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 3.0 Unported (CC BY 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by/3.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Optical Engineering es
sedici.relation.journalVolumeAndIssue vol. 55, no. 12 es
sedici.rights.sherpa * Color: green * Pre-print del autor: can * Post-print del autor: can * Versión de editor/PDF:can * Condiciones: >>Author's pre-print on arXiv >>On author's personal website, employer's non-commercial website or funders website only >>Publisher copyright and source must be acknowledged with set statement (see policy) >>Publisher's version/PDF may be used (preferred) >>Must link to publisher version using DOI >>Publisher last reviewed on 04/12/2017 * Link a Sherpa: http://sherpa.ac.uk/romeo/issn/0091-3286/es/


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 3.0 Unported (CC BY 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 3.0 Unported (CC BY 3.0)