Busque entre los 171054 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-11-29T12:36:51Z | |
dc.date.available | 2019-11-29T12:36:51Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/86334 | |
dc.description.abstract | Context. Cygnus X-1 is a well-observed microquasar. Broadband observations at all wavelengths have been collected over the years. The origin of the MeV tail observed with COMPTEL and INTEGRAL is still under debate and it has mostly been attributed to the corona, although its high degree of polarization suggests that it is synchrotron radiation from a jet. The origin of the transient emission above ~100 GeV is also unclear. Aims. We aim to clarify the origin of the broadband spectral energy distribution (SED) of Cygnus X-1, focusing particularly on the gamma-ray emission, and to gain information on the physical conditions inside the jets. Methods. We developed a lepto-hadronic, inhomogeneous jet model and applied it to the non-thermal SED of Cygnus X-1. We calculated the contributions to the SED of both protons and electrons accelerated in an extended region of the jet. We also estimated the radiation of charged secondaries produced in hadronic interactions through several radiative processes. Absorption effects were considered. We produced synthetic maps of the jets at radio wavelengths. Results. We find two sets of model parameters that lead to good fits of the SED. One of the models fits all the observations, including the MeV tail. This model also predicts hadronic gamma-ray emission slightly below the current upper limits. The flux predicted at 8.4 GHz is in agreement with the observations available in the literature, although the synthetic source is more compact than the imaged radio jet. Conclusions. Our results show that the MeV emission in Cygnus X-1 may be jet synchrotron radiation. This depends mainly on the strength of the jet magnetic field and the location of the injection region of the relativistic particles. Our calculations show that there must be energetic electrons in the jets quite far from the black hole. | en |
dc.language | en | es |
dc.subject | Gamma rays: general | es |
dc.subject | Radiation mechanisms: non-thermal | es |
dc.subject | X-rays: binaries | es |
dc.subject | X-rays: individuals: Cygnus X-1 | es |
dc.title | Lepto-hadronic model for the broadband emission of Cygnus X-1 | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1051/0004-6361/201527156 | es |
sedici.identifier.other | eid:2-s2.0-84949009354 | es |
sedici.identifier.issn | 0004-6361 | es |
sedici.creator.person | Pepe, Carolina | es |
sedici.creator.person | Vila, Gabriela Soledad | es |
sedici.creator.person | Romero, Gustavo Esteban | es |
sedici.subject.materias | Ciencias Astronómicas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Astronómicas y Geofísicas | es |
mods.originInfo.place | Instituto Argentino de Radioastronomía | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Astronomy and Astrophysics | es |
sedici.relation.journalVolumeAndIssue | vol. 584 | es |
sedici.rights.sherpa | * Color: green * Pre-print del autor: can * Post-print del autor: can * Versión de editor/PDF:can * Condiciones: >>On author's personal website or institutional website or OAI compliant website >>Some journals require an embargo for deposit in funder's designated repositories (see journal) >>Publisher's version/PDF may be used (see journal) >>Must link to publisher version >>Publisher copyright and source must be acknowledged >>Non-commercial * Link a Sherpa: http://sherpa.ac.uk/romeo/issn/0004-6361/es/ |