Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-12-13T13:10:46Z
dc.date.available 2019-12-13T13:10:46Z
dc.date.issued 2017
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/87351
dc.description.abstract Two, partially interwoven, hot topics in the analysis and statistical modeling of neural data, are the development of efficient and informative representations of the time series derived from multiple neural recordings, and the extraction of information about the connectivity structure of the underlying neural network from the recorded neural activities. In the present paper we show that state-space clustering can provide an easy and effective option for reducing the dimensionality of multiple neural time series, that it can improve inference of synaptic couplings from neural activities, and that it can also allow the construction of a compact representation of the multi-dimensional dynamics, that easily lends itself to complexity measures. We apply a variant of the 'mean-shift' algorithm to perform state-space clustering, and validate it on an Hopfield network in the glassy phase, in which metastable states are largely uncorrelated from memories embedded in the synaptic matrix. In this context, we show that the neural states identified as clusters' centroids offer a parsimonious parametri-zation of the synaptic matrix, which allows a significant improvement in inferring the synaptic couplings from the neural activities. Moving to the more realistic case of a multi-modular spiking network, with spike-frequency adaptation inducing history-dependent effects, we propose a procedure inspired by Boltzmann learning, but extending its domain of application, to learn inter-module synaptic couplings so that the spiking network reproduces a prescribed pattern of spatial correlations; we then illustrate, in the spiking network, how clustering is effective in extracting relevant features of the network's state-space landscape. Finally, we show that the knowledge of the cluster structure allows casting the multi-dimensional neural dynamics in the form of a symbolic dynamics of transitions between clusters; as an illustration of the potential of such reduction, we define and analyze a measure of complexity of the neural time series. en
dc.language en es
dc.subject neural data es
dc.title Density-based clustering: A 'landscape view' of multi-channel neural data for inference and dynamic complexity analysis en
dc.type Articulo es
sedici.identifier.other doi:10.1371/journal.pone.0174918 es
sedici.identifier.other eid:2-s2.0-85016640689 es
sedici.identifier.issn 1932-6203 es
sedici.creator.person Baglietto, Gabriel es
sedici.creator.person Gigante, Guido es
sedici.creator.person Del Giudice, Paolo es
sedici.subject.materias Ciencias Exactas es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Física de Líquidos y Sistemas Biológicos es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle PLoS ONE es
sedici.relation.journalVolumeAndIssue vol. 12, no. 4 es
sedici.rights.sherpa * Color: green * Pre-print del autor: si * Post-print del autor: si * Versión de editor/PDF:si * Condiciones: >>Creative Commons Attribution License 4.0 >>Authors retain copyright >>Publisher's version/PDF may be used >>Published source must be acknowledged with citation >>Author's pre-prints si be deposited in pre-print servers >>Publisher will deposit articles in PubMed Central >>All titles are open access journals * Link a Sherpa: http://sherpa.ac.uk/romeo/issn/1932-6203/es/


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)