Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-12-17T14:27:30Z
dc.date.available 2019-12-17T14:27:30Z
dc.date.issued 2017
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/87556
dc.description.abstract Spatial clustering is an important field of spatial data mining and knowledge discovery that serves to partition a spatial data set to obtain disjoint subsets with spatial elements that are similar to each other. Existing algorithms can be used to perform three types of cluster analyses, including clustering of spatial points, regionalization and point pattern analysis. However, all these existing methods do not provide a description of the discovered spatial clusters, which is useful for decision making in many different fields. This work proposes a knowledge discovery process for the description of spatially referenced clusters that uses decision tree learning algorithms. Two proofs of concept of the proposed process using different spatial clustering algorithm on real data are also provided. en
dc.format.extent 410-415 es
dc.language en es
dc.subject Decision tree learning es
dc.subject Knowledge discovery process es
dc.subject Regionalization es
dc.subject Spatial clustering es
dc.subject Spatial data mining es
dc.title Knowledge discovery process for description of spatially referenced clusters en
dc.type Objeto de conferencia es
sedici.identifier.other doi:10.18293/SEKE2017-013 es
sedici.identifier.other eid:2-s2.0-85029514211 es
sedici.identifier.issn 2325-9000 es
sedici.identifier.isbn 1891706411 es
sedici.creator.person Róttoli, Giovanni es
sedici.creator.person Merlino, Hernán es
sedici.creator.person García Martínez, Ramón es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2017-07
sedici.relation.event 29th International Conference on Software Engineering & Knowledge Engineering (USA, 5 al 7 de julio de 2017) es
sedici.description.peerReview peer-review es
sedici.relation.bookTitle Proceedings SEKE 2017 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)