Busque entre los 169345 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-12-20T14:02:43Z | |
dc.date.available | 2019-12-20T14:02:43Z | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/87801 | |
dc.description.abstract | In this work, we present two new variants to the deepSOM model: the deep elastic SOM (deSOM) and the deep ensemble elastic SOM (deeSOM), which overcome the mentioned issues. In deSOM the number of deep levels not only grows automatically, but also the size of each layer is expanded adaptively according to the data at each level, thus pre-miRNA neurons can be re-organized in a larger space. | en |
dc.format.extent | 1-4 | es |
dc.language | en | es |
dc.subject | Bioinformatics | es |
dc.subject | Pre-miRNA classification | es |
dc.subject | Deep neural architectures | es |
dc.subject | High class imbalance | es |
dc.title | Deep neural architectures for highly imbalanced data in bioinformatics | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.issn | 2683-8966 | es |
sedici.creator.person | Bugnon, Leandro A. | es |
sedici.creator.person | Yones, Cristian | es |
sedici.creator.person | Milone, Diego H. | es |
sedici.creator.person | Stegmayer, Georgina | es |
sedici.description.note | Extended abstract from Deep neural architectures for highly imbalanced data in bioinformatics, L. A. Bugnon, C. Yones, D. H. Milone, G. Stegmayer, (to appear in) IEEE Transactions on Neural Networks and Learning Systems (2019), doi 10.1109/TNNLS.2019.2914471 | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa | es |
sedici.subtype | Resumen | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | |
sedici.date.exposure | 2019-09 | |
sedici.relation.event | V Simposio Argentino de Ciencia de Datos y GRANdes DAtos (AGRANDA 2019) - JAIIO 48 (Salta) | es |
sedici.description.peerReview | peer-review | es |