Busque entre los 166285 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-12-26T12:50:28Z | |
dc.date.available | 2019-12-26T12:50:28Z | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/87851 | |
dc.description.abstract | Optimization of hyper-parameters in reinforcement learning (RL) algorithms is a key task, because they determine how the agent will learn its policy by interacting with its environment, and thus what data is gathered. In this work, an approach that uses Bayesian optimization to perform a two-step optimization is proposed: rst, categorical RL structure hyper-parameters are taken as binary variables and optimized with an acquisition function tailored for such variables. Then, at a lower level of abstraction, solution-level hyper-parameters are optimized by resorting to the expected improvement acquisition function, while using the best categorical hyper-parameters found in the optimization at the upper-level of abstraction. This two-tier approach is validated in a simulated control task. Results obtained are promising and open the way for more user-independent applications of reinforcement learning. | en |
dc.format.extent | 32-38 | es |
dc.language | en | es |
dc.subject | Reinforcement learning | es |
dc.subject | Hyper-parameter optimization | es |
dc.subject | Bayesian optimization, Bayesian optimization of combinatorial structures (BOCS) | es |
dc.title | A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.issn | 2451-7585 | es |
sedici.creator.person | Barsce, Juan Cruz | es |
sedici.creator.person | Palombarini, Jorge | es |
sedici.creator.person | Martínez, Ernesto | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | |
sedici.date.exposure | 2019-09 | |
sedici.relation.event | XX Simposio Argentino de Inteligencia Artificial (ASAI 2019) - JAIIO 48 (Salta) | es |
sedici.description.peerReview | peer-review | es |
sedici.relation.isRelatedWith | http://sedici.unlp.edu.ar/handle/10915/135049 | es |