Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-12-26T12:50:28Z
dc.date.available 2019-12-26T12:50:28Z
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/87851
dc.description.abstract Optimization of hyper-parameters in reinforcement learning (RL) algorithms is a key task, because they determine how the agent will learn its policy by interacting with its environment, and thus what data is gathered. In this work, an approach that uses Bayesian optimization to perform a two-step optimization is proposed: rst, categorical RL structure hyper-parameters are taken as binary variables and optimized with an acquisition function tailored for such variables. Then, at a lower level of abstraction, solution-level hyper-parameters are optimized by resorting to the expected improvement acquisition function, while using the best categorical hyper-parameters found in the optimization at the upper-level of abstraction. This two-tier approach is validated in a simulated control task. Results obtained are promising and open the way for more user-independent applications of reinforcement learning. en
dc.format.extent 32-38 es
dc.language en es
dc.subject Reinforcement learning es
dc.subject Hyper-parameter optimization es
dc.subject Bayesian optimization, Bayesian optimization of combinatorial structures (BOCS) es
dc.title A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning en
dc.type Objeto de conferencia es
sedici.identifier.issn 2451-7585 es
sedici.creator.person Barsce, Juan Cruz es
sedici.creator.person Palombarini, Jorge es
sedici.creator.person Martínez, Ernesto es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/
sedici.date.exposure 2019-09
sedici.relation.event XX Simposio Argentino de Inteligencia Artificial (ASAI 2019) - JAIIO 48 (Salta) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/135049 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)