Busque entre los 168899 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-12-26T13:13:55Z | |
dc.date.available | 2019-12-26T13:13:55Z | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/87859 | |
dc.description.abstract | Domain Name Service is a central part of Internet regular operation. Such importance has made it a common target of different malicious behaviors such as the application of Domain Generation Algorithms (DGA) for command and control a group of infected computers or Tunneling techniques for bypassing system administrator restrictions. A common detection approach is based on training different models detecting DGA and Tunneling capable of performing a lexicographic discrimination of the domain names. However, since both DGA and Tunneling showed domain names with observable lexicographical differences with normal domains, it is reasonable to apply the same detection approach to both threats. In the present work, we propose a multi-class convolutional network (MC-CNN) capable of detecting both DNS threats. The resulting MC-CNN is able to detect correctly 99% of normal domains, 97% of DGA and 92% of Tunneling, with a False Positive Rate of 2.8%, 0.7% and 0.0015% respectively and the advantage of having 44% fewer trainable parameters than similar models applied to DNS threats detection. | en |
dc.format.extent | 90-101 | es |
dc.language | en | es |
dc.subject | Network security | es |
dc.subject | Botnet | es |
dc.subject | Deep Neural Networks | es |
dc.title | Detecting DNS Threats: A Deep Learning Model to Rule Them All | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.issn | 2451-7585 | es |
sedici.creator.person | Palau, Franco | es |
sedici.creator.person | Catania, Carlos | es |
sedici.creator.person | Guerra, Jorge | es |
sedici.creator.person | García, Sebastián José | es |
sedici.creator.person | Rigaki, María | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | |
sedici.date.exposure | 2019-09 | |
sedici.relation.event | XX Simposio Argentino de Inteligencia Artificial (ASAI 2019) - JAIIO 48 (Salta) | es |
sedici.description.peerReview | peer-review | es |