Busque entre los 171322 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-12-27T15:40:50Z | |
dc.date.available | 2019-12-27T15:40:50Z | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/87940 | |
dc.description.abstract | This work presents a visual odometric system for camera tracking in underwater scenarios of the seafloor which are strongly perturbed with sunlight caustics and cloudy water. Particularly, we focuse on the performance and robustnes of the system, which structurally associates a deflickering filter with a visual tracker. Two state-of-the-art trackers are employed for our study, one pixel-oriented and the other feature-based. The contrivances of the trackers were crumbled and their suitability for underwater environments analyzed comparatively. To this end real subaquatic footages in perturbed environments were employed. | en |
dc.format.extent | 151-164 | es |
dc.language | en | es |
dc.subject | Visual odometric system | es |
dc.subject | Deflickering filter | es |
dc.subject | Visual tracker | es |
dc.title | A Robust Approach for Monocular Visual Odometry in Underwater Environments | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.issn | 2451-7585 | es |
sedici.creator.person | Jordán, Mario A. | es |
sedici.creator.person | Trabes, Emanuel | es |
sedici.creator.person | Delrieux, Claudio | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | |
sedici.date.exposure | 2019-09 | |
sedici.relation.event | XX Simposio Argentino de Inteligencia Artificial (ASAI 2019) - JAIIO 48 (Salta) | es |
sedici.description.peerReview | peer-review | es |