Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-02-17T17:24:05Z
dc.date.available 2020-02-17T17:24:05Z
dc.date.issued 2019
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/89175
dc.description.abstract Los métodos de sustracción de fondo basados en modelo con una única característica como la intensidad del píxel, suelen fallar en la clasi ficación de escenas complejas. En este trabajo se propone ampliar los descriptores del modelo de fondo para considerar otras característica como la textura, la distribución de intensidades, escala de grises, color, y de esta manera mejorar la clasifi cación de cada píxel. Para clasi ficar además se tiene en cuenta la característica principal y secundaria en cada región de imágenes tomadas con c amaras estáticas. En particular para la textura, se utilizó una modi ficación del descriptor simple y tradicional Local Binary Pattern (LBP) que resulta invariante a los cambios de tonalidades en escala de grises, y la rotación. Los descriptores fueron incorporados al algoritmo de sustracción de fondo Visual Background Extraction (ViBE), que identifi ca zonas de movimiento en las escenas, comparando distintas características del modelo de fondo. El algoritmo propuesto se puede aplicar para detectar personas o vehículos en aplicaciones para seguridad ciudadana, monitoreo de tráfi co, entre otros. Los resultados preliminares obtenidos en la detección de objetos muestran que es factible utilizar varios descriptores del modelo de fondo para lograr mejorar la tasa de acierto y con bajo costo computacional, con la consiguiente ventaja para etapas de procesamiento posteriores, como el reconocimiento y el seguimiento de los objetos. es
dc.format.extent 13-21 es
dc.language es es
dc.subject Descriptores de textura es
dc.subject Patrones invariantes es
dc.subject Detección de objetos es
dc.title Sustracción de fondo por varias características estables en el modelo es
dc.type Objeto de conferencia es
sedici.identifier.issn 2683-8990 es
sedici.creator.person Dominguez, Leonardo es
sedici.creator.person Pérez, Alejandro Daniel es
sedici.creator.person D'Amato, Juan P. es
sedici.creator.person Barbuzza, Rosana es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/
sedici.date.exposure 2019-09
sedici.relation.event I Simposio Argentino de Imágenes y Visión (SAIV 2019) - JAIIO 48 (Salta) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)