Busque entre los 166731 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2020-02-20T17:09:39Z | |
dc.date.available | 2020-02-20T17:09:39Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/89513 | |
dc.description.abstract | In this work, a novel approach for generating rescheduling knowledge which can be used in real-time for handling unforeseen events without extra deliberation is presented. For generating such control knowledge, the rescheduling task is modelled and solved as a closed-loop control problem by resorting to the integration of a schedule state simulator with a rescheduling agent that can learn successful schedule repairing policies directly from a variety of simulated transitions between schedule states, using as input readily available schedule color-rich Gantt chart images, and negligible prior knowledge. The generated knowledge is stored in a deep Q-network, which can be used as a computational tool in a closed-loop rescheduling control way that select repair actions to make progress towards a goal schedule state, without requiring to compute the rescheduling problem solution every time a disruptive event occurs and safely generalize control knowledge to unseen schedule states. | en |
dc.format.extent | 86 | es |
dc.language | en | es |
dc.subject | Control knowledge | es |
dc.subject | Schedule state simulator | es |
dc.subject | Computational tool | es |
dc.title | Closed-loop Rescheduling using Deep Reinforcement Learning | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.issn | 2618-3277 | es |
sedici.creator.person | Palombarini, Jorge A. | es |
sedici.creator.person | Martínez, Ernesto C. | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa | es |
sedici.subtype | Resumen | es |
sedici.rights.license | Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-sa/3.0/ | |
sedici.date.exposure | 2019-09 | |
sedici.relation.event | I Simposio Argentino de Informática Industrial e Investigación Operativa (SIIIO 2019) - JAIIO 48 (Salta) | es |
sedici.description.peerReview | peer-review | es |