Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-02-20T17:09:39Z
dc.date.available 2020-02-20T17:09:39Z
dc.date.issued 2019
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/89513
dc.description.abstract In this work, a novel approach for generating rescheduling knowledge which can be used in real-time for handling unforeseen events without extra deliberation is presented. For generating such control knowledge, the rescheduling task is modelled and solved as a closed-loop control problem by resorting to the integration of a schedule state simulator with a rescheduling agent that can learn successful schedule repairing policies directly from a variety of simulated transitions between schedule states, using as input readily available schedule color-rich Gantt chart images, and negligible prior knowledge. The generated knowledge is stored in a deep Q-network, which can be used as a computational tool in a closed-loop rescheduling control way that select repair actions to make progress towards a goal schedule state, without requiring to compute the rescheduling problem solution every time a disruptive event occurs and safely generalize control knowledge to unseen schedule states. en
dc.format.extent 86 es
dc.language en es
dc.subject Control knowledge es
dc.subject Schedule state simulator es
dc.subject Computational tool es
dc.title Closed-loop Rescheduling using Deep Reinforcement Learning en
dc.type Objeto de conferencia es
sedici.identifier.issn 2618-3277 es
sedici.creator.person Palombarini, Jorge A. es
sedici.creator.person Martínez, Ernesto C. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Resumen es
sedici.rights.license Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-sa/3.0/
sedici.date.exposure 2019-09
sedici.relation.event I Simposio Argentino de Informática Industrial e Investigación Operativa (SIIIO 2019) - JAIIO 48 (Salta) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)