Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2009-06-17T17:48:19Z
dc.date.available 2009-06-17T03:00:00Z
dc.date.issued 1967-12
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/8958
dc.description.abstract The object of this article is to study the so-called Law of the Optimum Technician in relation to the continuous function of production. We presume that the production function is defined by the dimension interval of n ai<= vi <=bi, with ai>0, i=1,...,n where partial first continuous derivates are allowed, but the existence of partial second derivatives are not sought. We presume that marginal productivity x'i (vi) is first a positive monotony, increasing until it reaches a maximum, after which it is a decreasing monotony until it reaches a minimum of negative value, to later become an increasing negative monotony. Based on this we analytically deduce that the medium productivity curve xi(vi) in the different cases which may arise finally brings us to the needed condition, sufficient to fulfill the Law of the optimum technician. This is followed by a geometric interpretation of the question, and concludes by considering the special case of ai= 0. en
dc.format.extent 17-30 es
dc.language es es
dc.subject economía es
dc.subject productividad es
dc.title La ley del óptimo técnico es
dc.type Articulo es
sedici.creator.person Rafael, Alberto es
sedici.subject.materias Ciencias Económicas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Económicas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/
sedici.description.peerReview peer-review es
sedici2003.identifier ARG-UNLP-ART-0000001152 es
sedici.relation.journalTitle Económica es
sedici.relation.journalVolumeAndIssue vol. 13, no. 40 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)